Three TaFAR genes function in the biosynthesis of primary alcohols and the response to abiotic stresses in Triticum aestivum

نویسندگان

  • Meiling Wang
  • Yong Wang
  • Hongqi Wu
  • Jing Xu
  • Tingting Li
  • Daniela Hegebarth
  • Reinhard Jetter
  • Letian Chen
  • Zhonghua Wang
چکیده

Cuticular waxes play crucial roles in protecting plants against biotic and abiotic stresses. They are complex mixtures of very-long-chain fatty acids and their derivatives, including C20-C32 fatty alcohols. Here, we report the identification of 32 FAR-like genes and the detailed characterization of TaFAR2, TaFAR3 and TaFAR4, wax biosynthetic genes encoding fatty acyl-coenzyme A reductase (FAR) in wheat leaf cuticle. Heterologous expression of the three TaFARs in wild-type yeast and mutated yeast showed that TaFAR2, TaFAR3 and TaFAR4 were predominantly responsible for the accumulation of C18:0, C28:0 and C24:0 primary alcohols, respectively. Transgenic expression of the three TaFARs in tomato fruit and Arabidopsis cer4 mutant led to increased production of C22:0-C30:0 primary alcohols. GFP-fusion protein injection assay showed that the three encoded TaFAR proteins were localized to the endoplasmic reticulum (ER), the site of wax biosynthesis. The transcriptional expression of the three TaFAR genes was induced by cold, salt, drought and ABA. Low air humidity led to increased expression of TaFAR genes and elevated wax accumulation in wheat leaves. Collectively, these data suggest that TaFAR2, TaFAR3 and TaFAR4 encode active alcohol-forming FARs involved in the synthesis of primary alcohol in wheat leaf and the response to environmental stresses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of salinity stress and application of salisylic acid on expression of TaSC and TaNIP genes in two bread wheat (Triticum aestivum L.) cultivars

Salinity is one of the environmental stresses that affects bread wheat grain yield in most parts of the world. One of the basic strategies to mitgiate the effect of non-biological stresses such as salinity is genetic improvement of crop plants. Identification of stress-associated genes is a prerequisite for genetic improvement. In the present study, the role of a number of genes in the aquapori...

متن کامل

TaABC1, a member of the activity of bc1 complex protein kinase family from common wheat, confers enhanced tolerance to abiotic stresses in Arabidopsis

Abiotic stresses such as drought, salinity, and low temperature have drastic effects on plant growth and development. However, the molecular mechanisms regulating biochemical and physiological changes in response to stresses are not well understood. Protein kinases are major signal transduction factors among the reported molecular mechanisms mediating acclimation to environmental changes. Prote...

متن کامل

The expression profile of D4H and DAT genes in Catharanthus roseus in response to drought, salinity and salicylic acid

Catharanthus roseus L. is an important medicinal plant producing several terpenoid indole alkaloids (TIAs) such as vincristine and vinblastine secondary metabolites with anticancer activity. The TIAs biosynthetic pathways are affected by biotic and abiotic stresses. In this study the effect of drought (7 days), salinity (150 mM NaCl), foliar spray of salicylic acid (10-5 M) and salicylic acid i...

متن کامل

Wheat (Triticum aestivum L.) Growth and Yield as Influenced by Flooding and Salinity Stresses in Northern Iran

Salinity and flooding are as two very important factors of soil degradation. They often occur together and cancause severe damage to plants. However, plant response to environmental stresses may vary with growth stage atwhich exposure occurs. A pot study was conducted in 2005-2006 in northern Aq Qala (northern Iran) to studycombine effects of waterlogging and soil salinity at different growth s...

متن کامل

The Effect of Drought Stresses, Fusarium Culmorum and Heterodera Filipjevi and their Interactions on the Expression Pattern of Transcription Factor Gene NAC69-3 in Bread Wheat

SExtended Abstract Introduction and Objective: Small grain cereals such as wheat, are affected by types of destructive environmental factors such as abiotic and biotic stresses that severely reduce crop yields. To cope with these conditions, transcription factors cause plant resistance to these stresses by activating or suppressing the expression of genes involved in the resistance responses....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016